网站地图/蜘蛛地图

欢迎光临优发国际_优发国际注册_优发国际游戏-APP下载

河北优发国际公司

当前位置:优发国际 > 新闻中心 > 正文

[优发国际注册]借助人工智能,仓库机器人的技能

发表时间:2020-04-23  作者:[db:作者]   来源:http://www.hongchenyinyue.com
优发国际注册是24小时提供时政新闻,国内新闻,国际新闻,生活新闻,时事热点,新闻图片,军事,历史,生活,的专业时事报道门户网站。

编者按:如今,机器人走进工厂和仓库,已经不是稀奇的事情了。然而,大多数机器人都还是非常笨拙的,设计上也存在许多不足,而且可能也只能抓取特定外形的物品。这篇文章,原标题是AI Helps Warehouse Robots Pick Up New Tricks,作者WILL KNIGHT在文中介绍了加州大学伯克利分校深度学习与机器人学大牛Pieter Abbeel与几位华人学生创业,并研发出具有更高精准和可靠性的机器人。图片来源:Magnus Pettersson/Covariant.AI在人工智能领域,包括机器学习领域两大鼻祖在内的多位大牛都一致认为,巧妙的算法将会让工业机器人的能力实现质的飞跃。
杰弗里·辛顿(Geoffrey Hinton)与杨立昆(Yann LeCun)这两大鼻祖,与蒙特利尔大学教授尤舒亚·本吉奥(Yoshua Bengio),因在深度学习领域做出的贡献,共同获得了2018年图灵奖。他们三位也是研发仓库挑拣机器人的人工智能初创公司Covariant.ai的投资人。Covariant.ai公司所研发的计算机平台,除了有配备摄像头的成品机器人手臂、一个专用抓手装置之外,还有非常强大的计算能力,能够计算并确认如何抓取仓库挑拣篮的物品。前不久,这家初创公司公布了其研发并已经投入商用的首款人工智能机器人装备。这款机器人,主要功能是挑拣产品包装盒和包装袋,目前已在德国电子产品零售商Obeta公司投入使用。你可能会认为,挑拣日常的包装盒以及塑料包装袋,听起来也没有特别之处,而且基本上这类工作也是人工作业的。工厂及仓库中的工人,可能会经常被要求使用新投入的操作工具,有时候可能还是一系列不同的工具。然而,对于机器人而言,要想快速学习如何抓取另一种物品,可能就相对困难了。如今,在工厂和仓库中已经投入使用的机器人,大多数都还是非常笨拙的,设计上也存在许多不足。在如今的人工智能及机器人研究领域,要研究如何让机器人去抓取不熟悉或者是外形复杂的物品,仍然是一个棘手课题。近年来,许多研发制造机器人的初创公司如雨后春笋般地出现,他们都基本上采用了非常简单的算法,来执行挑拣仓库中部分物品等日常工作。在这个领域,知名企业包括Plus One Robotics、Picnic,以及RightHand Robotics等公司。对于初创企业而言,通过更安全的机器人手臂、定制化的抓手装置、成品感应器以及机器人视觉与控制的开源代码,能够赋予机器人新的“使命”,比如在仓库内部运输产品,或者将货架上的纸箱取下来等等。目前,Covariant.ai公司还没能研发出一款能够像人类一样灵活变通的机器人,但它成功地将一项叫做强化学习(reinforcement learning)的研究技术,运用到了工业背景下。在实际运用过程中,如果要想让机器人学习,又不希望机器人犯错,是几乎不可能的事情。商用机器人装备,还需要更高的精准性与可靠性。成立于2017年的Covariant.ai公司,是由美国加州大学伯克利分校(UC Berkeley)人工智能领域的知名教授皮特·阿贝尔(Pieter Abbeel)和他的几位学生一起创立的。阿贝尔教授是将深度强化学习应用在机器人方面的先驱人物。2010年,他研发了一款能够叠衣服的机器人(尽管速度很慢),并因此在学术圈名声大噪。借助一系列人工智能技术,Covariant.ai公司主要在研究如何让机器人抓取不熟悉的物品。其中,就包括强化学习技术,让算法在不断的尝试与失败之中不断提高其可靠性。这有点像动物通过积极反馈与消极反馈来学习的过程。强化学习,近来一直在推动人工智能领域的重大突破。其中,就包括谷歌母公司Alphabet公司旗下的人工智能公司DeepMind研发的超凡博弈算法。这种博弈算法,可以让机器人通过视频图像识别物品的形状,了解在哪里如何去抓取这个物品。然而,强化学习非常复杂,并且需要强大的计算能力。“实际上,我以前一直对强化学习持怀疑态度,但现在我不再怀疑了。”多伦多大学特聘教授杰弗里·辛顿(Geoffrey Hinton)称。据辛顿教授称,要想让强化学习正常工作,其需要的计算能力通常都会让人觉得“望而却步”。因此,能够将之成功投入商用,必然会引起不少人的注目。辛顿教授还提到,更加令人印象深刻的是,Covariant.ai公司的系统已经在商用背景下运行了相当长的一段时间了。段岩(Rocky Duan,首席技术官,左一),张天浩(研究科学家,左二), 皮特·阿贝尔(Pieter Abbeel,右二),陈曦(Peter Chen,首席执行官,右一)。图片来源:Elena Zhukova/Covariant.AI据阿贝尔称,除了强化学习之外,Covariant.ai公司研发的机器人,还结合了模仿学习(imitation learning)的技术,通过观察感知演示来学习,并且通过另一种元学习(meta-learning,即学会如何学习)的算法,来进一步理解。

同类文章排行